Assessing human performance and safety of railway operators: A Human Performance Railway Operational Index (HuPeROI) to enhance safety of railway operations

Dr. Arnab Majumdar

The 2nd Workshop on Railway Operation for Safety and Reliability Hong Kong 17th November 2017

Agenda

- Motivation Aim of research
- Railway Performance Shaping Factors taxonomy (R-PSFs)
 - methodology, dependencies, most significant factors
- Human Performance Railway Operational Index (HuPeROI)
 - methodology, development, implementation, preliminary findings
- Results Difficulties
- Conclusion Future work

Motivation

US FRA safety data shows that train accidents due to human factors reach the last decade constantly more than 30% of total railroad accidents

Recent study (Evans, 2011) shows that the majority of fatal train accidents in Europe for the last 29 years were caused by:

- 1. SPADs
- 2. Excessive speed
- 3. Signaling or dispatching error

Motivation

Train collision, 1999 SPAD, Ladbroke Grove, U.K.

31 fatalities & 523 injuries inadequate training, signal location

Motivation

Train collision, 1999 SPAD, Ladbroke Grove, U.K.

Train collision, 2008 SPAD, Chatsworth, L.A.

31 fatalities & 523 injuries inadequate training, signal location

25 fatalities & 135 injuries distraction, use mobile phone

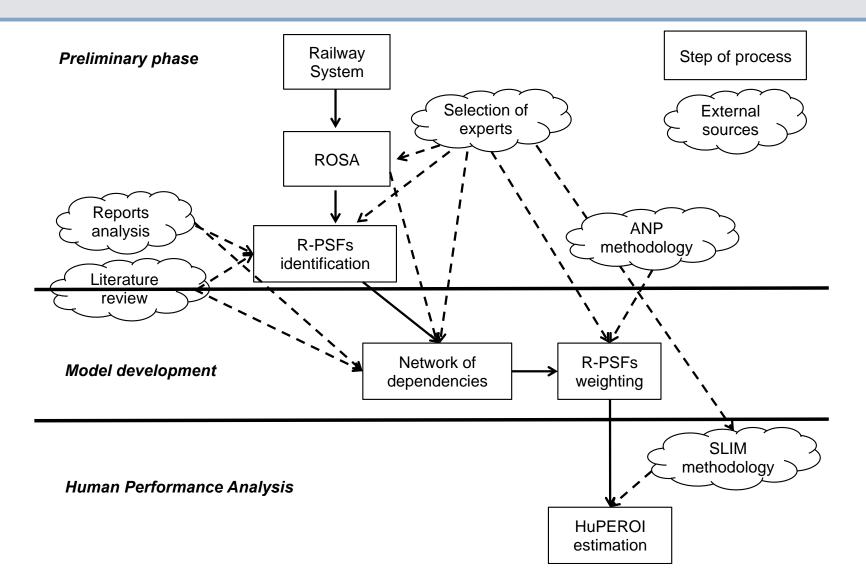
Motivation

Lac-Mégantic, Quebec, **5 July 2013**

Train Derailment, 47 people dead, 2000 people forced from their homes

Aim of research

Develop an index, referred to as


Human Performance Railway Operational Index (HuPeROI)

which aims to:

- identify the factors that contribute and lead to human errors
- assess human performance
- provide insights for different employees "perception"
- direct resources more efficiently towards the development of sound solutions for improving operators performance

Framework of study

The modern railway system

The modern railway system

Based on the definitions from:

- EC Directive 2004/49/EC
- FRA Collision Hazard Analysis Guide
- Australian MoU between ATSB and Rail Safety Regulators

The modern railway system

The Railway Operational System Architecture (ROSA)

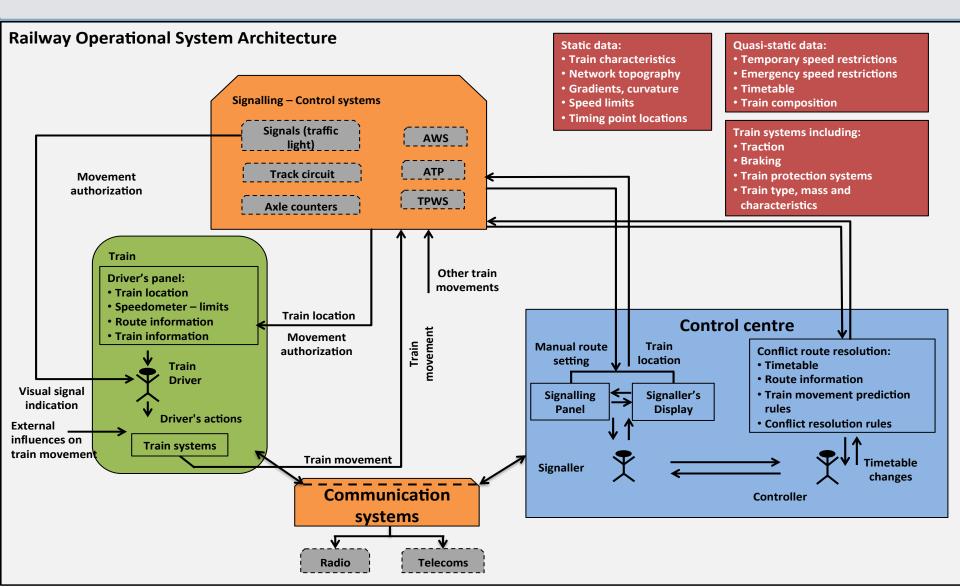
The ROSA

ROSA illustrates the interactions amongst the operators as well as amongst operators, infrastructure, rolling stock and other equipment

It has been developed based on:

- literature review (e.g. Bonnett, 2005, Burrage, 2003, Hall, 2005, RSSB, 2009)
- on-site visits, i.e. train driver cabins & railway control rooms
- targeted interviews with Subject Matter Experts (SMEs)

The ROSA


London Underground – Piccadilly line

Lloyd's Register Foundation

The ROSA

R-PSFs taxonomy

Performance Shaping Factors

PSFs can be described as:

"all these factors such as age, working conditions, team collaboration, mental and physical health, work experience or training which enhance or degrade human performance"

(Boring, 2007)

Human Performance

"the human capabilities and limitations that have an impact on the safety and efficiency of operations"

(Maurino, 1998)

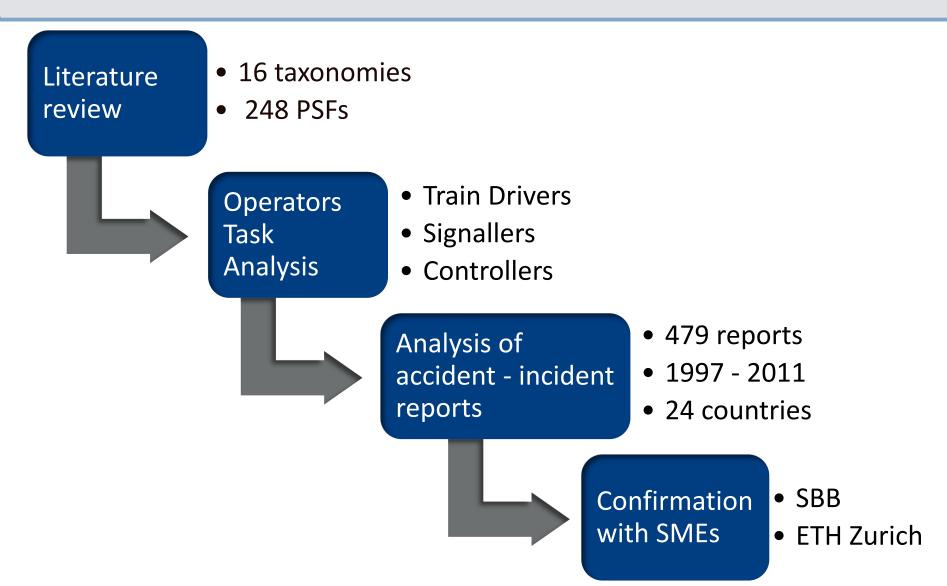
"the likelihood that a person will accomplish a given task under given conditions in a given time interval within the acceptance limits"

(Bubb, 2005)

Limitations of existing PSFs taxonomies

- Definitions of PSFs
- Dependencies amongst PSFs
- How each one of the PSFs affect on human performance

 Even taxonomies have been tailored to railway industry are developed on regional characteristics


Railway PSFs taxonomy - why a new approach ?

R-PSFs taxonomy:

- is developed based on the duties of railway employees
- clearly and precisely defines the PSFs examples for railways
- distinguishes PSFs as dynamic and static
- Identifies dependencies between PSFs
- "weights" individual PSFs contribution to human performance

R-PSFs taxonomy development

R-PSFs taxonomy - Reports analysis

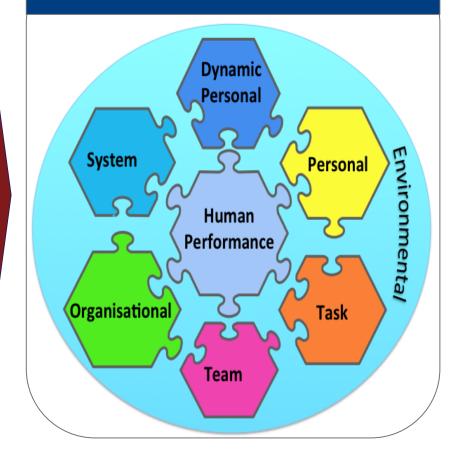
Reports contain information such as:

- Type of train
- Occurrence type
- Associated event
- Location and time

- Immediate cause
- Causal factors
- PSFs
- Consequences

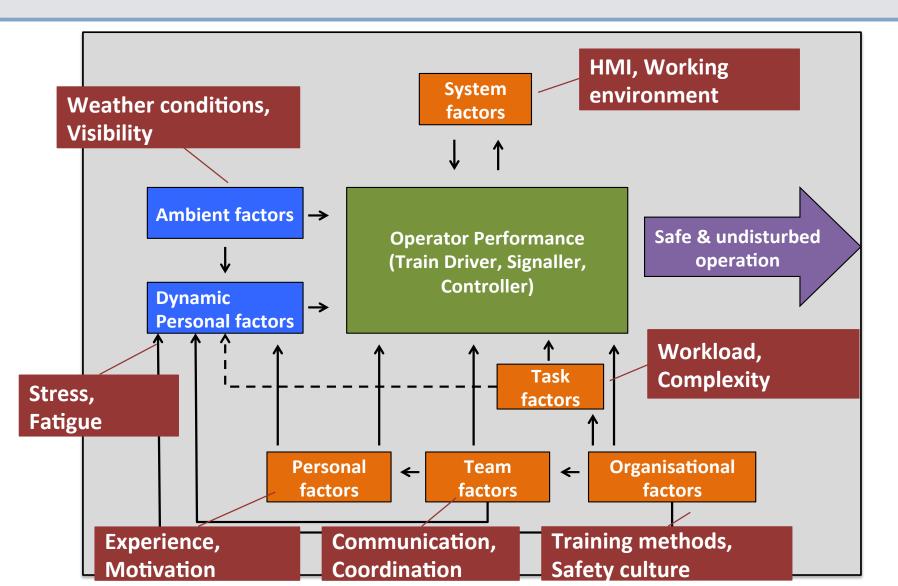
R-PSFs taxonomy - Reports analysis

		НМІ		
Occurrence type	Type of railway	Year	Month	
Near miss HMI, Working		2009 Shift	Ma Personal information	
Location conditions in the C.R.		Time	Responsibility	
Hanger Lane junction	London	5:22 pm	Signaller, Train driv	
Description	Immediate cause	Causal - Decmak.	PSFs Stress	
An eastbound District Line train 103 passed at signal WM1 at danger at low speed. The train stopped and the train driver reported the incidentto contact the train operator of train 103 once he became aware of the situation.	The signaler giving train 103 the authority to proceed towards Hanger Lane junction before it was safe to do so.	Train 103 second skills Signaller did not bring all trains to a halt Signaller was taking prescribed medication Fit to work	Time pressure Workload Communication Leadership, Saf. culture	
Comment	Consequences	FIL LO WOLK		
Training inconsister Experie Weather unlikely to affect driver's visibility	nce viries or material			



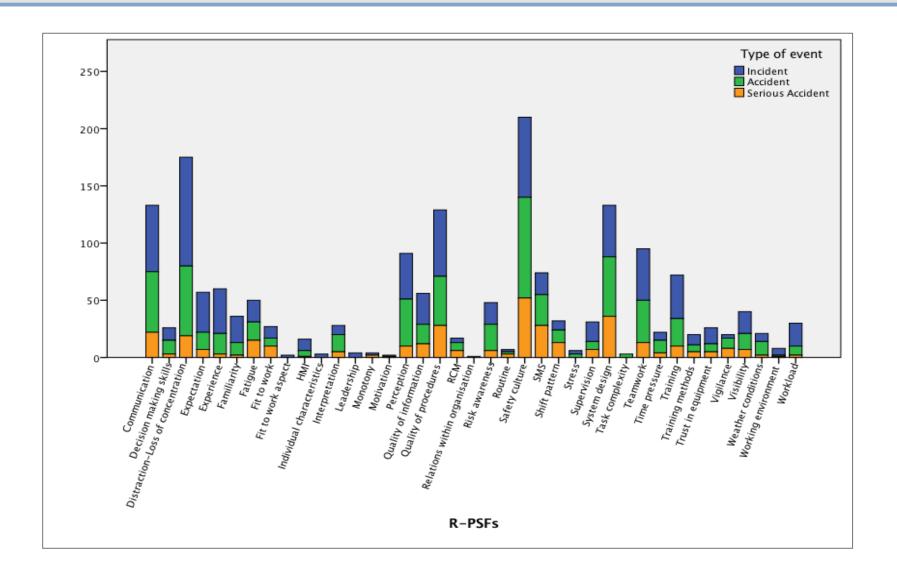
R-PSFs taxonomy development

Development approach


- Literature review → 16 existing taxonomies and 248 PSFs
- 2. Operators task analysis
- 3. Analysis of 479 worldwide incidents and accidents
- 4. Interviews with SMEs *Swiss Federal Railways*

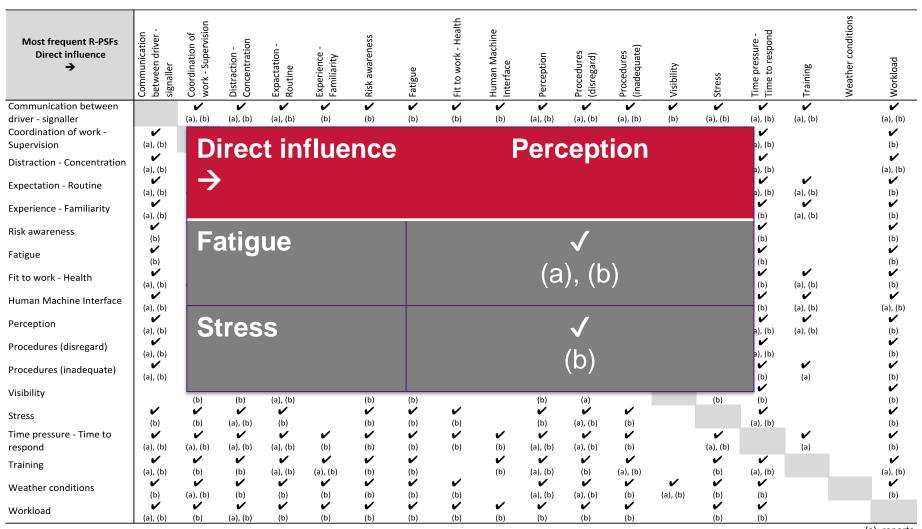
7 categories – 43 elements

R-PSFs taxonomy development

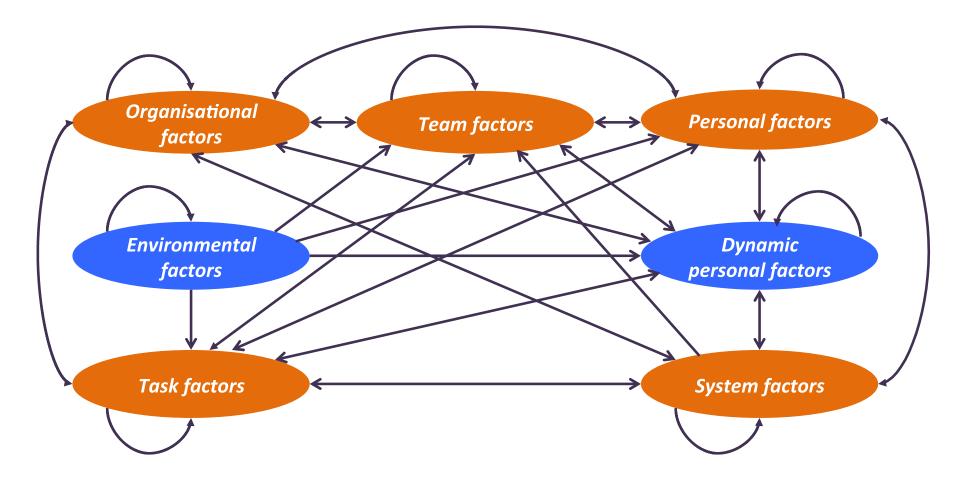


R-PSFs taxonomy - complete list

Personal	Dynamic Personal	Task	Team	Organisational	System	Environmental
Training - competence	Distraction - loss of concentration	Workload	Communication	Training / training methods	System design	Weather conditions
Fit to work (health)	Expectation	Monotony	Teamwork	Safety culture (disregard procedures)	Human Machine Interface	Visibility
Familiarity	Perception	Routine	Team relations	SMS	Working environment	
Experience	Interpretation	Time pressure - time to respond	Quality and trust in information	Quality of procedures, standards and regulations	Trust in equipment	
Motivation	Stress	Task complexity		Leadership	Railway communication systems	
Individual characteristics	Fatigue	Task instructions		Supervision		
	Vigilance			Shift pattern		
	Situational awareness			Relations within organisation		
	Decision making skills			Incentives for employees		
				Communication within organisation - feeling secure		
				Fit to work aspect		

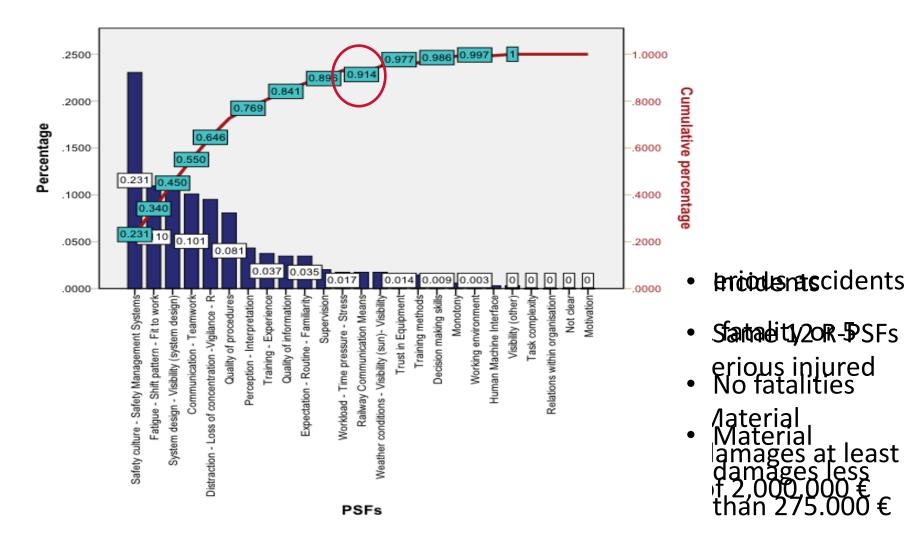

R-PSFs taxonomy - complete list

Lloyd's Register Foundation


R-PSFs dependencies - elements

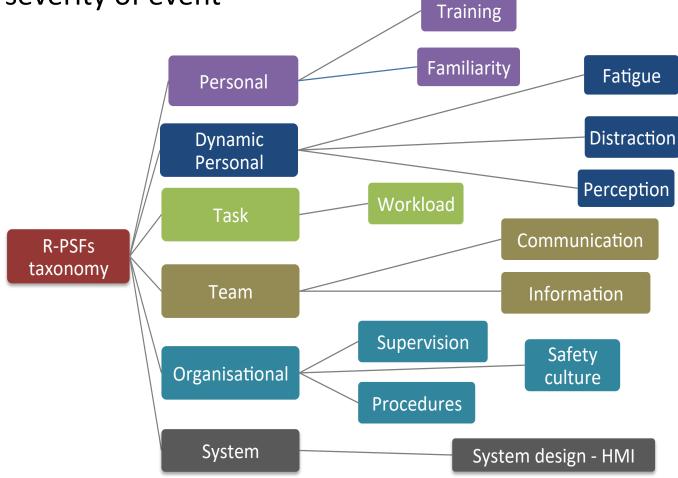
(a): reports (b): SBB employees

R-PSFs dependencies - categories



R-PSFs - 12 factors version

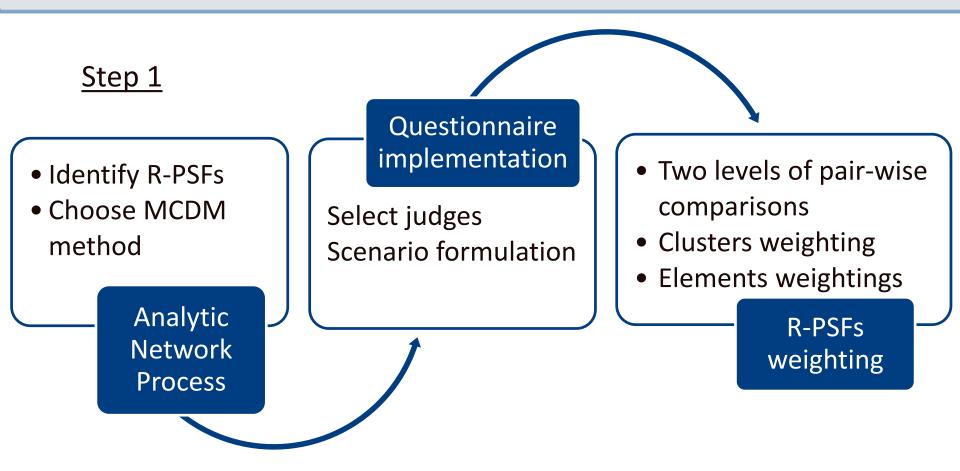
- Factors not identified equally to railway occurrences
- 43 factors difficult to further analysed
- Based on given definitions and sessions with experts
 - RSSB, HFs group
 - OWT, ETH Zurich
- R-PSFs version with 12 factors which 12, why 12?
 - Findings from reports and ranking from SBB experts
 - Severity of consequences (human loses, financial loses)


R-PSFs - 12 factors version

R-PSFs - 12 factors

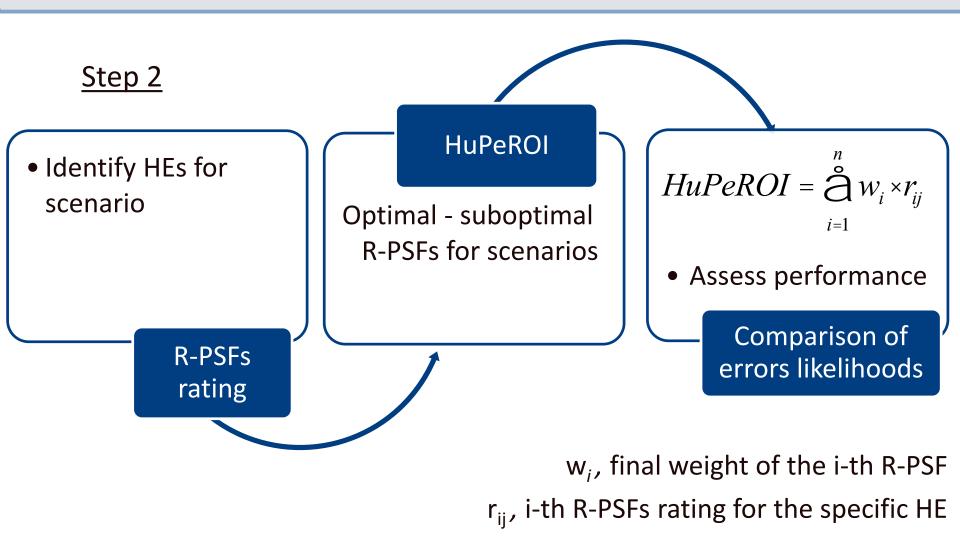
...account for more than 90% of occurrences regardless severity of event

The HuPeROI



R-PSFs quantification

- Considers dependencies amongst:
 - R-PSFs categories
 - R-PSFs elements
- Analytic Network Process (ANP) methodology
- Success Likelihood Index Methodology (SLIM)
- R-PSFs pairwise comparisons for both levels
- 18 matrices to assess R-PSFs
- 54 participants \rightarrow 972 collected matrices



HuPeROI development

HuPeROI development

"A SPAD" scenario: Train Driver fails to stop at signal

Question:

"Of the two categories which one is more and how much more important with respect to the influence on personal category?"

Personal	Extreme		Very strong		Strong		Moderate		Equal		Moderate		Strong	;	Very strong		Extreme	Personal
Dynamic Personal	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Organisational
Dynamic personal	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Personal

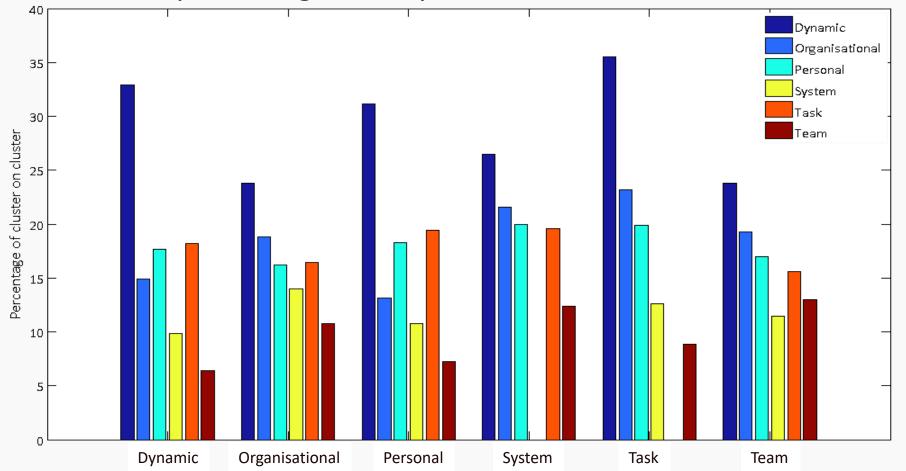
"A SPAD" scenario: Train Driver fails to stop at signal

Question:

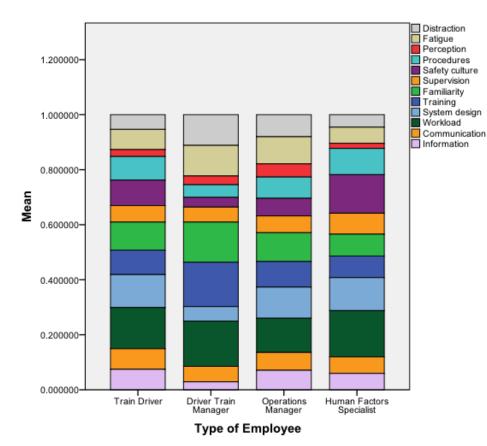
"Of the two elements which one is more and how much more important with respect to the influence on distraction?"

Distraction	Extreme		Very strong		Strong		Moderate		Equal		Moderate		Strong		Very strong		Extreme	Distraction
Training	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Familiarity
Information	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	Communication

R-PSFs quantification - "A SPAD" case study


- 3 U.K. Train Operators
 - First Hull Trains: long distance
 - FirstScot Rail: short distance commuting
 - Piccadilly Line: underground
- 54 Participants
 - 36 Train Drivers
 - 4 Driver Train Managers
 - 11 Operations Managers
 - 3 HFs experts (LUL & RSSB)

R-PSFs quantification - "A SPAD" case study


R-PSFs clusters "weighting"

• Groups **NOT** significantly different

Aggregated results per type of employee for elements

- Workload most important for all
- Safety culture for TD, HF
- Training for DTM
- Familiarity for all
- Procedures for TD, HF
- Fatigue for DTM and OM
- System design TD, OM, HF

Data not normally distributed \rightarrow non parametric tests

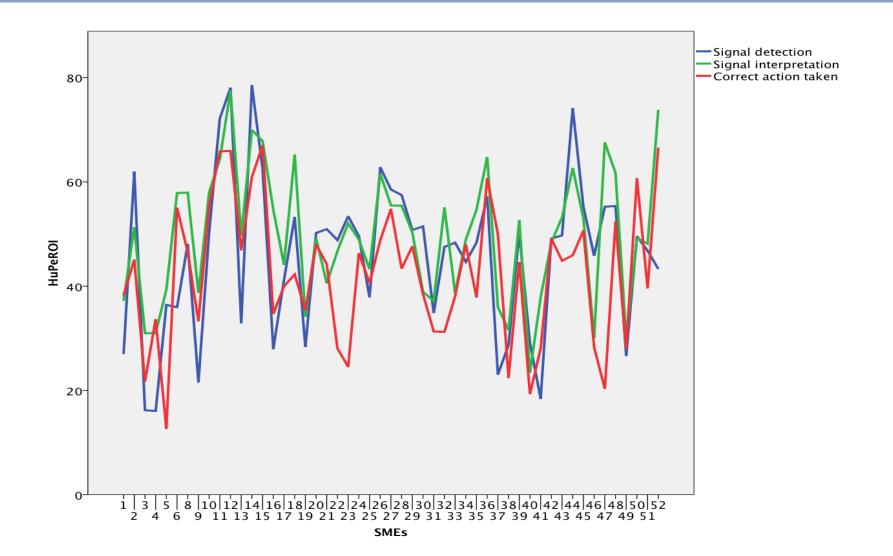
R-PSFs weighting does not differ for:

- type of operators
- age
- SPAD experience

The only identified difference was for "*Procedures*" vs. "Years of experience"

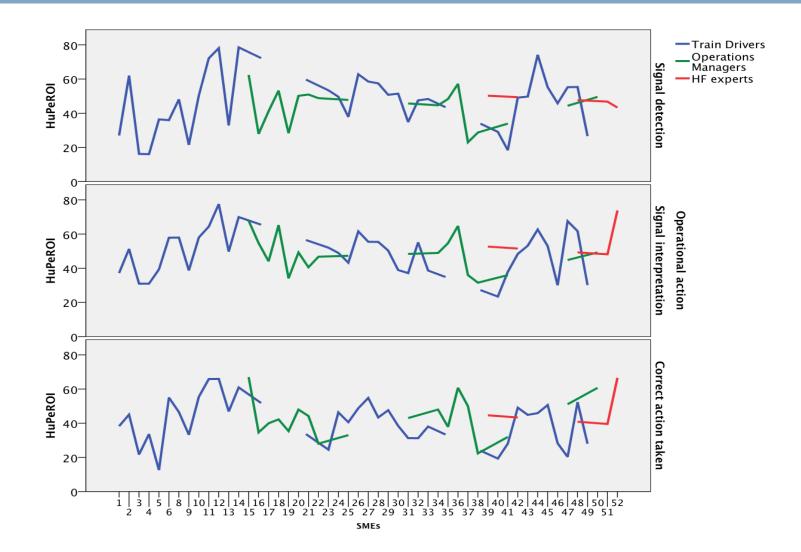
R-PSFs quantification - most likely error

- A train driver may experience a SPAD because they fail to
 - detect the signal
 - interpret the signal
 - act as required


• Which one is the most likely type of error?

• It is derived from
$$HuPeROI = \overset{n}{\overset{}} W_i \times r_{ij}$$

	Rating of Railway Performance Shaping Factors													
Scenario - Errors	R-PSFs													
SPAD Train driver, open line (not tunnel), day operation, good weather conditions, good visibility	Training (incl. experience) Familiarity (incl. expectation and routine)		Distraction (incl. concentration, vigilance, situational awareness loss)	Fatigue (incl. shift pattern and fitness to work) Perception (incl. interpretation)		Workload (incl. stress and time pressure)	Communication (incl. teamwork)	Quality and Trust in Information	Safety culture (incl. SMS)	Quality of Procedures	Supervision	System design (incl. HMI)		
Job at time of SPAD Train driver fails to stop the train before passes signal at danger	0 = no training, 50= some training, 100= very good training	0 = no familiarity 50 = some level of familiarity 100 = high levels of familiarity	0 = very distracted 50 = some distraction 100 = no distraction	0 = too fatigued 50 = some level of fatigue 100 = no fatigued	0 = no perception 50 = some perception 100 = high perception levels	0 = extreme workload 50 = some level of workload 100 = no workload	0 = poor quality 50 = average quality 100 = very good quality	0 = poor quality 50 = average quality 100 = high level quality	0= poor safety culture 50 = some safety culture 100= very good safety culture	0 = poor quality 50 = average quality 100 = very good quality	0 = no supervision distracted 50 = some supervision 100 = very good supervision	0 = poor system design 50 = average quality 100 = very good system design		
1. Signal detection	80	80	10	30	20	60	70	70	70	80	80	50		
2. Signal interpretation	80	60	20	40	10	60	70	70	70	80	80	50		
3. Action executed	70	40	10	30	20	50	60	40	70	50	50	50		



		N	Mean	Std.	Std.		nfidence for Mean	- Min.	Max.
		IN	Mean	Deviation	Error	Lower Bound	Upper Bound	- 191111.	Wax.
HuPeROI	Train Driver	34	46.6603	17.0003	2.9155	40.7286	52.5920	16.0508	78.5344
	Operations Manager	14	43.8982	12.2273	3.2679	36.8384	50.9580	23.0325	62.4113
signal	HFs expert	3	46.7718	3.4724	2.0048	38.1458	55.3978	43.2878	50.2326
detection	Total	51	45.9086	15.2204	2.1313	41.6278	50.1894	16.0508	78.5344
HuPeROI	Train Driver	34	49.0766	13.0443	2.2371	44.5252	53.6280	23.4137	77.5124
	Operations Manager	14	49.1045	11.5242	3.0800	42.4506	55.7584	31.5390	67.8134
signal	HFs expert	3	58.2026	13.7110	7.9161	24.1425	92.2626	48.1374	73.8187
interpretation	Total	51	49.6211	12.6113	1.7659	46.0741	53.1681	23.4137	77.5124
	Train Driver	34	40.9721	13.4339	2.3039	36.2848	45.6594	12.6227	65.9363
HuPeROI	Operations Manager	14	44.2281	12.6978	3.3936	36.8967	51.5596	22.3827	67.0106
action	HFs expert	3	50.2642	14.3512	8.2857	14.6139	85.9145	39.5895	66.5786
executed	Total	51	42.4125	13.2401	1.8540	38.6887	46.1364	12.6227	67.0106

R-PSFs - limitations - areas to explore

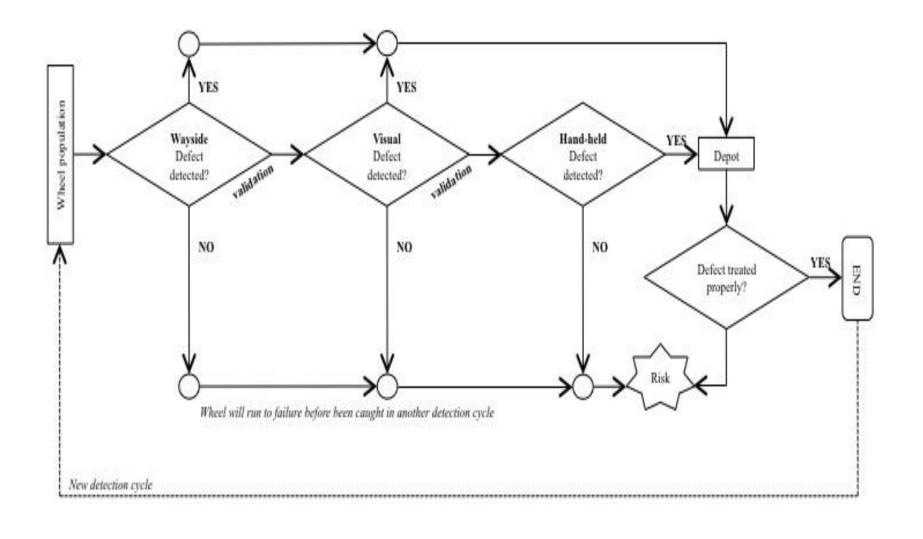
- Design of questionnaire
 - time consuming
 - user (un)friendly
- How R-PSFs quantification may change having other sample, e.g. other line or personnel

Conclusion

Conclusion

HuPeROI aims to:

- assess human performance
- suggest mitigation strategies and areas to be improved
 - no mobile phones in the train cabin
- design the system to prevent potential human failures
 - equipment in train cabin
- identify differences between personnel perspectives



Future work

- Implementation of HuPeROI for several railway operational scenarios in collaboration with the industry
- Incorporate the HuPeROI into the Safety Management Systems of organisations
- Transfer the HuPeROI concept to other transport modes and other industries
- Accelerate technology uptake
- Convert the HuPeROI into a software package to be used by relevant stakeholders

Wheel defect detection process

Reference

<u>Reliability Engineering & System Safety</u> <u>Volume 170, February 2018, Pages 226-243</u>

The human performance railway operational index—a novel approach to assess human performance for railway operations

Miltos Kyriakidis, Arnab Majumdar and Washington Y. Ochieng https://doi.org/10.1016/j.ress.2017.10.012

Thank you...

a.majumdar@imperial.ac.uk